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Abstract-A generalised continuum model for granular media is derived by direct homogenisation
of the discrete equations of motion. In contrast to previous works on this topic, continuum concepts
such as stress and moment stress are introduced after homogenisation. First, a very simple one­
dimensional model is considered and the continuum version for this model is derived by replacing
the difference quotients of the discrete model by differential quotients. The dispersion relations of
the discrete and the continuous model are derived and compared. Variational boundary conditions
for the continuous model are deduced from the stationarity of the corresponding Lagrangian. The
three-dimensional case is treated in an essentially similar fashion. The resulting continuum theory
is a combination of a Cosserat Continuum and a higher-order deformation gradient continuum.
The salient features of the theory are illustrated by means of the dispersion relations for planar
wave propagation. Copyright 1:9 1996 Elsevier Science Ltd.

I. INTRODUCTION

In most previous works on continuum models for random granular assemblies (Digby,
1981; Muhlhaus and Vardoulakis, 1987; Walton, 1987; Jenkins, 1991; Muhlhaus et al.,
1991) certain a priori assumptions are made with respect to relationships between the
statical and kinematical quantities of the continuum model envisaged and the original
discrete system, the granulate. These assumptions are not critical in the case of homogeneous
or almost homogeneous deformations, where higher-order deformation gradients or higher­
order rotation gradients do not playa role. For strongly inhomogeneous deformations
however [e.g. upon shear banding Muhlhaus and Vardoulakis (1987)] the situation is
different. In this case higher-order deformation gradients have to be considered leading to
a generalised continuum theory of some kind. In an attempt to extend the validity of his
standard continuum model to strongly inhomogenous deformation, Jenkins (1991) adopted
a nonlocal interpretation of the Cauchy-Love relation (Love, 1927). Vardoulakis and
Aifantis (1989) have included gradients of the plastic strain into the dilatancy constraint
equation in order to account for the strong spatial nonuniformity of the deformation upon
shear banding. Muhlhaus et al. (1991) defined average stress and moment-stress tensors by
equating the virtual work of a Cosserat Continuum to the corresponding expression of the
discrete system. There are many possibilities. The question now is which of the continuum
models comes closest to the behaviour of a discrete particulate material. In this paper,
continuum relations are derived from the discrete equations of motion by replacing the
difference expressions of the discrete model by appropriate differential expressions. In this
way any bias towards a particular continuum theory is avoided. Not too surprisingly, the
result turns out to be a combination of a Cosserat theory and a strain gradient theory. The
relative importance of the nonstandard terms, namely the deformation gradient terms in
the constitutive relations, is elucidated by means of the dispersion relation for planar wave
propagation. Corresponding dispersion relations for a discrete system of spherical grains
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2842 H.-B. Miihlhaus and F. Oka

have been derived by Walton (1988). The results are compared in Section 3.5. As in
Waltons' paper, at the starting point of the present derivation stand the equations of motion
for a dense discrete assembly of spherical grains. However in contrast to Walton's approach,
we first turn to the homogenisation of the problem. The dispersion relations are then
derived for the homogenised model. In agreement with the asymptotic character of the
present theory it turns out that the dispersion relations coincide up to the fourth order in
the wavenumber. It should be mentioned that Jenkin's (1991) model does not represent a
homogenised version of a discrete model and consequently a comparable coincidence
cannot be expected in this case. We begin in the next section with an introductory discussion
of a strongly simplified model for a one-dimensional granulate.

Throughout the paper we assume that the deformation is infinitesimal, the packing
dense enough to ensure solid like behaviour and for simplicity we consider an idealised
material consisting of identical spherical grains.

2. ONE-DIMENSIONAL MODELS

2.1. Formulation
First we use the Fermi-Pasta-Ulam (FPU) oscillator (Fermi, 1965; Tabor, 1989) as a

cartoon for one-dimensional dynamical processes in granular media. We shall later show
that the mathematical structure of this simple model is indeed consistent with the one­
dimensional version of the three-dimensional model we derive subsequently. The FPU
oscillator consists of N equally spaced masspoints, each having mass m, which are connected
by nonlinear elastic springs. The translation of the jth masspoint is designated as uj and we
define bj = Uj- Uj_ \. The force-relative displacement (P j - b) relation of the FPU chain
reads

Pj = kb/l + IXb}) , (1)

where k and IX are constants. Within the context of granular materials one assumes that the
masspoints consist of spherical grains which interact through Hertz-Mindlin contacts. In
a uniaxial deformation the solution for the normal component of the contact force reads
(Love, 1927)

(
b)3/2

Pj=M 315 ' (2)

where J.1 and v are the shear modulus and the Poisson ratio of the sphere material, respec­
tively, and D is the sphere diameter. Now we assume that the granular chain is prestressed
under the static load Po and

D(P )2/3
bjo = bo =:3 ;; (3)

is the corresponding relative displacements at the grain contacts. The incremental force­
relative displacement relationship for small deviations from the equilibrium state (Po, bo)
is obtained by Taylor expansion of eqn (2) as

(4)

where Pj = Pi-PO and bj = b)-boo Terms of higher than second order in bj have been
neglected. In the following the tildes over P; and bj are dropped for convenience.

The total elastic energy and the kinetic energy are obtained as
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lV-I

T= ~m I ut
j~ I

(5)

and we assume that Un = U'I = O. Insertion of eqn (5) into Lagrange's equations of motion
gives

(6)

Equation (6) agrees up to terms of order 6} with the equations of motion for a Toda lattice
which is integrable. A number of interesting solutions, including solitons, can be found in
Toda's (1988) book on nonlinear lattices.

For the derivation of the continuum version of eqn (6) we first replace the discrete
coordinate by a continuous coordinate, i.e.jD ---+ x and we establish the relationship between
uj and uj ± I by writing (Toda, 1988)

(7)

where the shifting operator is understood as

Inserting eqn (7) into eqn (6) gives

ma = -2k(I-COSh D! )U[l +20: sinhD;-uJ
ox ex

and from this, by Taylor expansion

(8)

(9)

where f3 = ':J.D. Note that the 04 U/ OX4 term in eqn (10) is destabilisingt so that in general
the 86 u/ax6 term has to be included to restore the well-posedness of the differential problem.

We now rephrase eqn (10) in terms of stress u and strain F. = au/ax with the result:

au
pii = -,:;- ,

ox
(11 )

where pg and Vg = nD3
/ 6 designate the density of the grain material and the grain volume,

respectively, Vs = Vg/V is the solid volume fraction and p = VsPg.
The asymptotic version of eqn (11) is the famous Korteweg-de Vries (KdV) equation,§

probably the most thoroughly explored nonlinear partial differential equation which has
stable solitary waves (solitons) as solutions [see e.g. Tabor (1989) for details].

+Assuming homogeneous b.c.s the deformation energy expressions in eqn (20) corresponding to the terms
a2'U, v = 1,2, ... in the equations of motion read (-I r+ I (c'u)' ; accordingly the v = I term enters with a positive
sign (stabilising), the term with v = 2, with a negative sign (destablising), etc.

§ For proof, first the dimensionless variables t' = WI, W = kv,)(pVg); u' = u!D are introduced. Equation
(11) becomes (dropping primes) u" = U,,, + 2[3u,u" + 1/12u",+ h.o.!. Next we look for an asymptotic solution of
the form y ~ ¢(X, T), X = x - I and T = {it. Thus ¢xr+ ¢xcPxx+ (j'¢xxxx = 0, (j' = 1!(24{1). Setting u = ql, yields
UT+UUX+(j'u", = 0, which is, within trivial scaling, the reduced form of the KdV equation.
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2.2. Dispersion relations
Next the dispersion relation of the discrete model eqn (6) is compared with that of the

continuous model eqn (9) or its approximation, eqn (10). In the case of the discrete model
we are looking for modes of the form u; = A q exp iq(jD - vpt), j = 1, 2, ... N, i = )=1, q
is the wave number and vp is the phase velocity. By insertion into eqn (6) the dispersion
function is obtained as

2 12kvs (I-COSqD) 6kvs 1 2 I 4
Vp = -- ~ --[I-r;(qD) +360(qD) - ...].

nDp (qD)2 nDp "
(12)

For the derivation of the dispersion function of the continuous model we first write the
linear part of eqn (9) in the form

.. 12kvs ( a)u = - --- l-coshD~ u.
nD 3 p ox

Insertion of the eigenmode u = Aqexpiq(x-vpt) yields

V2 = 12kvs [1-COShiDq] = 12kvs [1-COSDq].
p nDp (qD)2 nDp (qD)2

(13)

(14)

That is, if infinitely many terms are included in the Taylor expansion of the differential
operator cosh D(%x), the dispersion functions of the discrete and the continuous model
coincide identically. Otherwise one obtains the corresponding approximation. In case of
the Iinearised version of eqn (10), for instance, we obtain

(15)

which are the first three terms of the power series expansion of eqn (14).

2.3. Variational boundary conditions
In this section variational boundary conditions for the continuum model are deduced

from the stationarity of the corresponding Lagrangian. The Lagrangian density is obtained
by replacing the differences in eqn (5) by the corresponding differential expression. The
variational principle is written as

L ---+ staL L = It I fL!£ dx dt
'0 Jo

(16)

and, dropping terms of order fJD 4 and D 6
, the expression for the Lagrangian density !£ is

obtained as

I .2 6kvs (I (OU)2 D
2

(0
2
,U)2 D

2
au a3

u I (aU)3 )!£=-pu -- - ~ +- -- +-~-+-fJ~ +
2 nD 2 ax 8 ox2 6 ax ox3 3 ax . .. .

The stationarity of !£ requires the vanishing of the functional derivative

and the vanishing of boundary terms [e.g. Courant and Hilbert (1968), p. 179ff]

(17)

(18)
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6kvs [(OU D
2

03U) JL- -+-- r5u =0
nD ax 12 ox3 0 '

6kvs [(D 2
02

U) Or5UJL = 0
nD 12 ox2 ox 0 '

6kvs [(D 2 ou) 02
r5 UJL = o.

nD 6 ox ox2 0
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(19)

Obviously at the boundaries either au/ox or a2u/ox2 has to be equal to zero in order to
avoid ambiguity. In this case the Lagrangian can be written in a more symmetric form as

(20)

These are of course standard results of the calculus of variations and they are quoted here
for completeness and easy reference. It should be mentioned that in case of the three­
dimensional continuum the derivation of independent boundary conditions is less trivial
[see Mindlin (1964), Miihlhaus et al. (1991)]. The difficulty is that once a quantity is known
on a surface, then only the normal derivatives (normal to each surface element) can be varied
independently. Strategies to overcome this difficulty are described in the abovementioned
references.

3. THREE-DIMENSIONAL CONTINUUM MODEL

3.1. Formulation
We consider a three-dimensional assembly of identical, spherical grains. In view of the

envisaged continuum formulation, summations over grain contacts occurring in the discrete
equations of motion are replaced by a corresponding integral, that is we replace

where

co~cts(O) ~IdnA(r,n)(o)

n = (sin ecos ¢, sin esin ¢, cos e)

(21)

(22)

is the unit vector from the centre of a sphere to a contact on its surface, e and ¢ are
coordinate angles of a spherical coordinate system with the origin at the sphere (grain)
centre, r is the position vector with respect to a spatially fixed frame of reference and

1dn = f" fa" sin ede d¢. (23)

The function A(n) accounts for the orientational distribution of contacts so that A(r, n) dn
is the probable number of contacts in the element dn centred at n(e, ¢). When the dis­
tribution of contacts is isotropic and independent of the position then A (r, n) = K/4n, where
K is the coordination number, the average number of contacts per grain.

Using the relation (21) the equations of motion can be written as

6vs f P 2 3vs fpii = -~ AF" dn and - D 6J = -- An x F" dn
nD 3

" 10 nD 2
,

(24)

where u(r, t) and w(r, t) are now understood as the expectation values of the translations
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and rotations taken over all realisations in which the grain centre is originally at r; Fn is
the force exerted by the sphere at the contact at r + (DI2)n and as before, Vs designates the
solid volume fraction and D is the sphere diameter.

In the following, the expectation values for the motion of grains originally at r +Dn
are assumed as independent of whether or not there is another grain at r. This assumption
is usual in connection with dense materials and simplifies the mathematical treatment
considerably [see e.g. Willis (1981)].

The force components normal and parallel to the tangential plane of a contact depend
upon the relative displacements and rotations between adjacent grains. The relative dis­
placement Aun between the contact points of two spheres centred at rand r +Dn, respec­
tively, reads

(25)

where un = u(r+ Dn). Assuming linear elasticity the F - Au relation reads

(26)

where kn and ks are the normal and tangential contact stiffnesses and the indices refer to a
spatially fixed cartesian coordinate system. To simplify the algebra of the derivation it is
assumed from now on that A is independent of position. Then, because a contact is common
to two spheres, A( -n) = A(n). Inserting eqn (26) into eqn (24) the equations of motion
are obtained as:

(27)

(28)

We have used the symmetry property A(-n) = A(n) so the integration extends only over
half of the solid angle, i.e.

r dn = (2n (n12sin 8 de d¢.
J~/2 Jo Jo

Next u±n = u(r±Dn) and w±n are replaced by the Taylor expansions

and

where (oL = iJlox.;(o). Neglecting terms of higher than fourth order in D yields

(29)

(30)

(31 )
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(32)

(33)

Analogous expressions are obtained for the w-differences. What remains is to insert the
Taylor expansions into the eqns (27) and (28). The result reads:

(34)

where

(36)

Gij and Wij are the symmetric and skew symmetric part of the displacement gradient
respectively,

(37)

eijk with em = I is the permutation symbol and the superscribed c (for Cosserat) is used to
distinguish the particle spin from the spin Wij of an infinitesimal element d V.

In similar fashion one obtains for eqn (28) :

(38)

or

(39)

where the moment stress tensor p. introduced in this way is obtained as

(40)

Using the standard formula

(41)

eqn (40) can be written somewhat more explicitly as

where
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(43)

We conclude this section with the derivation of the Lagrangian density or action density
5£, corresponding to the eqns (35) and (38). We have

(44)

where in the present case

(45)

and

(46)

For the identification of "/II, first the right-hand sides of eqns (34) and (39) are multiplied
by uidt and widt, respectively. Integration over the space-time domain of the deformation
under consideration and successive application of Gauss' theorem, yields:

(47)

The boundary integrals appearing during the derivation have been assumed to vanish. As
in the one-dimensional case treated in Section 2, the second-order deformation gradients
in "If" destabilise the deformation so that in numerical analyses third-order gradients have
to be included into the expansion in order to stabilise the solution at a finite wave length.
The second-order and deformation gradients are destabilising, third-order gradients are
stabilising, fourth-order gradients are destabilising again and so forth. At first inspection
of eqn (47) one could get the impression that the spins Wand we would enter into the
complete model, of which egn (47) is an approximation, in the form of the relative spins
W - we only. As one easily verifies by Taylor expanding un and wn in eqn (25), the
prominent appearance of the W - we in the energy of deformation expression is just a
feature of the present order of approximation. We discuss a number of special cases for
which the coefficients are evaluated in detail. First the standard continuum is considered
where higher-order deformation gradients are neglected.

3.2. Standard continuum
In order to obtain explicit expressions for the elasticities we have to make an assump­

tion concerning the form of the contact distribution function A(n). For orthotropic depo­
sitional anisotropy A(n) can be expressed in terms of a symmetric, traceless tensor A
(Kanatani, 1984; Cowin, 1985):

k
A(n) = 4n(l +AljninJ. (48)

For transversely isotropic materials, A may be expressed in terms of the unit vector h in
the direction of the axis of anisotropy and the strength of the anisotropy:

(49)

where 0 ~ a ~ 1. Then
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K
A(n) = 4n [(I-a) +3a(h inY]·

2849

(50)

Next the components of the tensors Aili2i," are to be evaluated. Note that according to the
definition (36) all integrations over the angular domain of (8, ¢) extend over half of the
solid angle only. Integrals that facilitate this calculation are (Kanatani, 1984; Jenkins,
1991):

f
1 4n

I· . = n n ... n dn = - -- for
llI2··· l 2n . 'I 12 '2,1 2 2 + 1'

'X/2 n

and

(51 )

The result for the stress-deformation relation (35) reads:

When the deformation is homogeneous and body couples are absent, the stress must be
symmetric. Symmetry of (Jij requires that

Solving for W7j yields

(55)

where the identity

(56)

has been used.
For a = 0 the material is isotropic. The Lame coefficients fl and II. are related to the

contact stiffnesses as

and
VsK

). = -5-(kn -ks).
nD

(57)

Combination of the relations (57) yields ks = 2nD(fl-II.)/(VsK), and, since ks ~ 0 it follows
that the Poisson ratio of a random packing of spherical grains has to be less than or equal
to 0.25 (Walton, 1987). Jenkins (1988) has derived relations between km ks and the moduli
of the grain material for an infinitesimal deviation from a homogeneously and isotropically
prestrained ground state. The result reads
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2 J.l D 2

with M - -- --g--- 913 (1-vg)'
(58)

where vg and J.lg are the Poisson ratio and the shear modulus, respectively, of the grain
material and A is the magnitude of the volume strain of the ground state.

3.3. Isotropicfabric, general case
Inserting the relations (49)-(52) into the constitutive relationships (35) and (40) yields,

for a = 0 (isotropic contact distribution) :

and

where lij designates the relative deformation

}lij = uij- Wfj.

(60)

(61)

We note that, as a consequence of the number of terms included in the Taylor expansions
eqns (30) and (31), the moment stresses J.li, depend on the gradients of the relative defor­
mation tensor lij rather than on the gradients of Wfj alone as in the classical Cosserat
theory [see Gunther (1958), Schafer (1967) for reviews on this subject]. As in the Cosserat
models for granular media [e.g. Muhlhaus et al. (1991)] it is the grain diameter which
provides an intrinsic length scale which becomes crucial upon strain localisation, in bound­
ary layers or in high frequency wave-propagation and related phenomena.

It should be mentioned that the structural dependence of J.lis on irs in eqn (60) is
identical to the one derived by Jenkins (1991) in an entirely different way. The bending
stiffness differs by a factor of one-half from the corresponding value in Jenkin's paper. A
more significant difference is that in Jenkin's model the stress tensor depends exclusively
on the relative deformation Iii and its gradients whereas in the present theory (59) depends
on the second gradients of Wfj as well.

We conclude this section with a brief description of Jenkin's model. Jenkins (1991)
considers the eccentricity of the contact forces with respect to the grain centres by writing
the Cauchy-Love relation (Love, 1927) in the form

(62)

where rc = r + ~s,m is the particle number density and s = Do. The corresponding expression
for the moment stress is obtained by considering the moment of the contact force about r:

(63)

So far this is a nonlocal model and the corresponding gradient model is obtained by
expanding f into a Taylor series about r. The model (62) and (63) allows, in principle, for
spatial variability of the particle number density. In the derivation of eqns (59) and (60) it
was assumed that the solid volume fraction is constant, which for spherical grains of equal



Dispersion and wave propagation for granular materials 2851

radius implies that the particle density is constant. The assumption has been made to enable
explicit results and can be dropped in connection with general considerations.

3.4. Dispersion relations
First the equations of motion are specialised to one-dimensional deformations, defor­

mations where the fields depend on one coordinate only. Let x = Xl be this coordinate and
for deformations in the (x" x 2 ) plane we have

(64)

Inserting eqn (64) into the equations of motion, gives for isotropic fabric:

(65)

(66)

for the longitudinal wave along the x axis, and

(67)

(68)

for the microrotation and shear waves, respectively. The analogy between eqn (65) and the
linear part of the fourth-order approximation of eqn (9) is obvious, so there is little need
for further discussion at this point. It should be mentioned, however, that the influence of
the gradient term is strongest if J1 = A, that is, if ks = O. In this case d = v1. For D = 0 one
obtains the longitudinal and shear wave equations of the classical continuum, as it must
be. Note that in this case CU2/0X = 2W3 [eqn (68)] and COL designates the longitudinal wave
speed of the classical continuum (which is obtained here in the limit for infinitely long wave
length).

For the derivation of the dispersion functions for the rotational and shear waves we
consider travelling wave solutions of the form

(69)

where i = J-=1 and q is the wave number. Inserting eqn (69) into eqns (67) and (68) yields
the homogeneous system of equations

where

[
A uu

Awu

(70)
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( A) 2 I (6 27 A) 4 _ 2
A uu = 2-~y -12 5-35~Y ~W, (71)

(72)

(73)

y = qD and
D

w=-w.
Cos

(74)

Equation (70) has nontrivial solutions if

where

a - ~ b = -4(1- ~)+ ~ (2-3~),,2+_1_ (~_ 27 ~)y4,
- 10' J1. 10 J1. I 120 5 35 J1.

( Ie) 2 4 ( A)(6 3 A) 4c=4 I-~ y -12 I-~ 5+7~ y.

By expansion of eqn (75) in powers of y, the leading terms are obtained as

4(I-t)
- (1 3 2) d - 2

WI = 1/10 -40Y , an W2 = Y .

(75)

(76)

(77)

By inspection of the amplitude ratio one finds that the plus sign in eqn (75) corresponds to
a microrotation wave [that is DQ3/(yU2) » I within range of wave numbers considered
here], a wave type which does not exist in a standard continuum. At least in the range y ~ 1
the minus sign clearly corresponds to a conventional shear wave. The amplitude ratios as
functions of y and the ratio AIJ1. are represented in Fig. 4. It should be mentioned that the
existence of microrotation waves is typical for continua with extra degrees of freedom such
as the Cosserat Continuum (Suhubi and Eringen, 1964; Sluys, 1992) and Mindlin's (1964)
generalisation of it. The present theory is an approximation of the actual behaviour of a
granular material. One cannot expect the dispersion relations (75) to yield reasonable values
over the whole range of y. The maximum value of y( = 1.6) in the figures, corresponds to
a grain diameter, wave length ratio of about 1/4. The frequency, phase and group velocity
functions as functions of the dimensionless wave number yare represented in Figs 1-3. The
group velocity, the velocity at which the envelope of a group of harmonics travels through
a medium, has to be positive for physical reasons. In case of the microrotation wave [Fig.
3(b)], positive wave speeds exist only for a limited range of the material parameters, namely
for AIJ1. close to unity, which is equivalent to kslkn« 1. For the experimental proof of the
existence of such microrotation waves this means that one has to concentrate on the perhaps
somewhat academic case of smooth spheres or grains. The situation might change somewhat
if even higher deformation gradients are included.
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(b)
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'Y =2'IT ~
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1.2
I

1.4 1.6

Fig. I. Angular frequency as function of the dimensionless wave number y = 2n(D/!I!). (a) Shear
wave. (b) Microrotation wave.

A special case occurs if the spheres are ideally smooth so that k, = 0 and accordingly
A = Il. One then expects an instability which, as a matter of fact, is reproduced by the
model. From egns (75) and (76) it follows for A = Il:

(78)

and

(79)

We conclude this section with a comparison of the present results with an analysis
carried out by Walton (1988). Invoking statistical considerations Walton derived dispersion
relations for various forms of uniaxial wave propopation in a discrete granulate. As in the
present section, Walton assumes a statistically uniform contact distribution, so one would
expect coincidence of the results up to the fourth order in the wave number y. The general
form of the dispersion relations of the discrete model is usually very involved. Therefore
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Fig. 2. Phase velocities. (a) Shear wave. (b) Microrotation wave.

we concentrate on some of the more tractable and yet representative cases. Assuming
smooth spheres (i.e. ks = 0) Walton's result [eqn. (3.37)] reads:

(
I cos y sin y)

OJ = 30 -+---- .
IWallon 3 2 ,

Y Y
(80)

Expanding eqn (80) into a Taylor series gives

OJ = .,2 _~,,4 +_'_},6 _O(},8)
1Walton I 28/ 1512 .. (81 )

Equation (81) coincides up to the fourth order with the present result (79).
For the longitudinal wave eqns (65) and (66), the dispersion relation, are obtained as

_" , I 1411 + ll/l. 4

Wi: = y- - 140 211+/1. y (82)

or, using the relation
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The corresponding results by Walton reads

_ _ (I C )- I [ sin y C (I sin 1 2 cos 1 2 cos I)Jw - -+- }--+- ------+--
LWal,oo 6 20B Y 2B 3 Y y2 y3 (86)

where CjB = vg/{l-vg). Again, by developing eqn (86) into a Taylor series one shows that
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the results of eqn (86) for the discrete model and eqn (84) coincide exactly up to the fourth
order in y.

4. CONCLUSION

First we have studied a very simple one-dimensional model for the propagation of
longitudinal waves in a granular medium. From the discrete version of the model we have
derived a continuum model by replacing the difference quotients by differential quotients
or Taylor expansions, respectively. We have shown that the dispersion functions of the two
models coincide identically if, in the limit, infinitely many terms are included in the Taylor
expansion. For isotropic materials odd order derivatives cancel during the homogenisation.
It turns out that second-order strain derivatives act as destabilisers. Fourth-order derivatives
are stabilisers again and so forth.

We have followed the proposition frequently made in the literature that the grains
interact through Hertz-Mindlin contacts [e.g. Walton (1987), Jenkins (1988)]. The Hertz­
Mindlin contact stiffnesses are nonlinear functions of the relative displacement between the
point of contact and the grain centre. To facilitate the analytical treatment of the model we
have expanded the stiffness relations into a Taylor series about a homogeneously prestressed
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ground state. Truncation of the Taylor expansion after the quadratic term and retaining
derivatives of up to the fourth order in the spatial expansion yields the famous Korteweg­
de Vries equation, the archetypical equation of soliton dynamics. Next, we have considered
the three-dimensional case. The starting point for the derivation of the continuous model
are Newton's equations of motion. Similar to the situation in a Cosserat Continuum the
equations of motion contain an additional independent, rotational degree of freedom, the
grain rotation. However, different from the Cosserat and Mindlint (1964) Continua, a
consequent approximation scaled by powers of the grain diameter requires the inclusion of
higher order displacement gradients as well. If higher-order displacement and rotation
gradients are neglected, then the grain spin becomes an internal variable. The evolution
equation for the grain spin is obtained from the moment equilibrium condition. For
isotropic granulates it follows that the grain spin has to be equal to the nonsymmetric part
of the displacement gradient. In general, however, for anisotropic fabrics, the relation is
less trivial. Finally we have evaluated the dispersion relations for the propagation of
longitudinal and shear waves. As expected, the longitudinal wave equation is formally
identical to the one of the simplified model discussed in Section 2. The effective stiffness
and also the effective grain size however are smaller for the three-dimensional model. In
both cases the moduli are expressed in terms of contact stiffness, solid volume fraction and
coordination number (average number of contacts per grain) so that a comparison is
actually possible. It should be mentioned that for smooth grains (vanishing shear stiffness)
the effective grain diameters are equal to the physical grain diameters.

For the shear waves, two dispersion relations are obtained. In the one case the main
carrier of the energy is the displacement and in the other case the main carrier is the grain
rotation. The latter wave type, which does not exist in standard continua, is typical for
micropolar theories of all kinds.

In the present model all parameters of the dispersion relations are determined in the
sense that they can be expressed in terms of solid volume fraction, normal contact stiffness,
coordination numbers and average grain diameter. It should therefore be possible, at least
in principle, to verify, falsify or determine a range of validity of the model by careful
measurements of the various wave speeds either in physical experiments or, for a start, by
means of discrete element simulations. We wish to emphasise that here the situation is
different from previous developments in this area where it was suggested to calibrate
certain nonstandard moduli by means of wave speed measurements. In the latter case the
verification of the model would require an additional experiment.
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